Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence
نویسندگان
چکیده
منابع مشابه
Ion-scale spectral break of solar wind turbulence at high and low beta
The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since [Formula: see...
متن کاملDissipation-Scale Turbulence in the Solar Wind
We present a cascade model for turbulence in weakly collisional plasmas that follows the nonlinear cascade of energy from the large scales of driving in the MHD regime to the small scales of the kinetic Alfvén wave regime where the turbulence is dissipated by kinetic processes. Steady-state solutions of the model for the slow solar wind yield three conclusions: (1) beyond the observed break in ...
متن کاملGeneration of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملModeling of short scale turbulence in the solar wind
The solar wind serves as a laboratory for investigating magnetohydrodynamic turbulence under conditions irreproducible on the terra firma. Here we show that the frame work of Hall magnetohydrodynamics (HMHD), which can support three quadratic invariants and allows nonlinear states to depart fundamentally from the Alfvénic, is capable of reproducing in the inertial range the three branches of th...
متن کاملSmall scale energy cascade of the solar wind turbulence
Magnetic fluctuations in the solar wind are distributed according to Kolmogorov’s power law f below the ion cyclotron frequency fci. Above this frequency, the observed steeper power law is usually interpreted in two different ways: a dissipative range of the solar wind turbulence or another turbulent cascade, the nature of which is still an open question. Using the Cluster magnetic data we show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2018
ISSN: 2041-8213
DOI: 10.3847/2041-8213/aab351